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1 Abstract

This project aimed to use data from the Kepler mission to study stellar microvariability,
primarily through the detection of intrinsic periods of variation within lightcurves. To
achieve this, a study of different mathematical methods was undertaken. It was found that
the Lomb-Scargle periodogram and the continuous wavelet transform were appropriate
methods to use, but phase dispersion minimisation and information entropy minimisation
were rejected due to poor performance. It was demonstrated that fitting Gaussians to be
periodogram power spectrum provides a useful estimate of the uncertainty. The methods
chosen were proved to work by recovering known values for the Sun, including the eleven
year solar cycle, and evidence for the Carrington rotation period. Application of these
methods to Kepler targets revealed that most of the intrinsic variability has periods of
between 1 and 25 days. Interpreting these as rotation periods suggests the target stars
are, in general, younger than the Sun and hence rotate faster. Two Kepler targets were
selected for a more detailed discussion and possible interpretations of their lightcurves
were suggested.

2 Introduction

2.1 Motivation

Ever since Galileo used his newly invented telescope to observe the Sun and saw dark
spots on its surface around 1611 (Solanki, 2003), it has been known that it is not constant
and unchanging. More recently (Willson and Hudson, 1981), scientists have been able to
observe many different sources of variation, operating on a wide range of timescales, from
minutes to decades.

Any attempt to model the behaviour of stars must include these variations. However,
using the Sun as the only test case is not sufficient to draw any general conclusions about
stellar behaviour. To test models thoroughly, knowledge of the variations of many more
stars is required. The Kepler Mission provides a perfect source of data for this analysis.

2.2 Aims

The main aim of this project is to study the microvariability of Sun-like stars using data
collected by the Kepler Mission. In order to achieve this, various different mathemati-
cal methods of finding characteristic periods within the data will be analysed and their
reliability and accuracy tested. These methods will then be used on data from the Sun,
in an attempt to recover well known results. This will demonstrate the suitability of the
techniques for use on Kepler data.

These methods will be used to identify periods of interest within the available Kepler
target stars. Possible interpretations of these periods will be discussed, with reference to
the properties of the star in question. The prevalence of different timescales of variability
across the data set will be quantified and discussed.
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3 Stars

3.1 Introduction

Stars form when clouds of gas (largely molecular hydrogen) undergo a gravitational col-
lapse. As the cloud contracts, the gravitational energy of the particles is converted into
kinetic energy (Green et al., 2004, p163), increasing the temperature to such a level that
nuclear fusion can occur. Initially, stars burn hydrogen (through either the p-p chain or
the CNO bi-cycle - see Prialnik (2000, pp59-63) for more details). The main product of
these reactions is helium, but some heavier elements are also produced.

Stars spend most of their lifetimes in this hydrogen-burning phase, so most observed
stars are in this period of their lifetime. As a result, these stars produce the most densely
populated region of the Hertzsprung-Russell diagram, which is known as the main se-
quence. This is shown in Figure 11. Each of the dots represents a star. Most of them are
in the group stretching from the top left to the bottom right of the diagram; this is the
main sequence. Once the stars run out of hydrogen, they begin to fuse heavier elements
and have reached the post main sequence phase.

Stars are divided into different spectral types depending on their properties. The major
classes, in order of decreasing temperature, are O, B, A, F, G, K and M. More details can
be found in Tayler (1994), but Figure 11 provides information about the temperatures of
the classes. The Sun is a G-type star with a temperature of 5780K Güdel (2007).

Figure 1: A Hertzsprung-Russell diagram, with the main groups labelled. The luminosity
is displayed relative to L�. Note that the temperature scale decreases from left to right.
The diagram also serves to show the temperatures of different spectral classes of stars.1

1NASA HEASARC. The Classification of Stars. [online] Available at:
http://heasarc.gsfc.nasa.gov/docs/RXTE Live/class.html [Accessed 09/10/2011].
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3.2 Stellar Structure

3.2.1 Internal structure

Stars are made up of several different layers. In the centre of the star is the core, which is
the location of heat production from nuclear fusion. Once it has been released, energy from
this process travels outwards from the core. There are two methods of energy transfer;
radiation and convection.

When radiation is the dominant method of energy transport, photons produced by
the fusion reactions random-walk away from the centre by scattering, or absorption and
re-emission of photons. The photons produced in the core are very high energy γ-rays, but
the interactions redistribute this energy to the surrounding plasma (Green et al., 2004,
pp52-3).

As the photons move further out, the temperature decreases until the temperature
gradient is sufficient to allow convection (Phillips, 1999, p94). When energy transport by
convection dominates, the plasma absorbs the radiation coming from below (either from
the core or a radiative layer), heats up and begins to rise. It then radiates the energy
again, which causes it to cool, and sink back down again. These convection cells are
thought to be the cause of the granulation seen on the solar surface (Green et al., 2004,
p54).

The respective sizes and positions of radiative and convective zones within stars de-
pends on their mass. As mass increases, the extent of the outer convection zone decreases.
For stars a little more massive than the Sun, they disappear entirely, and an inner con-
vective zone is present instead. (Prialnik, 2000, p139-40).

A diagram showing the distribution of these zones within the Sun is shown in Figure 2.
Note the random walk of photons through the radiative layer, and that the convection
zone contains more than one set of convection cells. The cells causing granulation do not
reach all the way down to the radiative zone.

Figure 2: The interior structure of Sun-like stars. From Green et al. (2004, p55)
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3.2.2 Atmosphere

When viewing the Sun in the visible spectrum, one is actually looking at the photosphere.
This is a layer that radiates similar to a black body with an effective temperature of around
5780K (Güdel, 2007). The Sun’s photosphere is around 500km thick (Green et al., 2004,
p8), which is a very thin shell. When viewing the Sun from a fixed position, it appears
as a circle. In the visible spectrum, areas nearer the circumference are darker than the
centre due to an effect called limb darkening. This is mainly a geometrical effect. Lines of
sight in the centre of the sun penetrate deeper into the photosphere, as they are closer to
the normal to the surface, and therefore more light is visible. Lines of sight towards the
limbs reach shallower depths, which are cooler and therefore dimmer (see Green et al.,
2004, pp9-10 for a more detailed discussion). This effect varies throughout the spectrum.
In some regions, it has no effect, and in others, limb brightening occurs (see e.g. Withbroe
(1970)).

Since the Kepler mission measures primarily within the visible spectrum (see Sec-
tion 4), it will detect variation in the photospheres of its target stars. Stellar atmospheres
also consist of the chromosphere and the corona but they have little relevence to this
analysis.

3.2.3 Differential Rotation

Since they are made of plasma, stars may not have equal angular velocities at all latitudes.
In fact, rotation periods around the equator can be significantly shorter than those at the
poles. For example, the rotation period of the Sun ranges from around 24 days to around
38 days (Stenflo, 1990). For some stars, including the Sun, differential rotation is a key
ingredient of the stellar dynamo. Differential rotation has important implications for
lightcurves of stars where variability is present. Two sunspots at different latitudes will
have different rotation periods, and so both these periods should be present within the
star’s lightcurve.

3.2.4 Magnetic Field

Almost all cool stars, including the Sun, have magnetic fields produced by an internal
dynamo (Güdel, 2007). Magnetic fields are produced by the motion of charged particles,
and in the case of stars there are two types of motion: large scale rotation of the star,
and small scale convective motions (Tayler, 1997, p83).

The solar magnetic field is approximately dipolar (Solanki et al., 2006). The solar
dynamo excites and de-excites itself on a 22 year cycle, with with poles reversing every
11 years. Figure 32 provides a beautiful demonstration of this field reversal.

3.3 Stellar Variability

3.3.1 Starspots & Faculae

Sunspots are a solar feature that have been known about for hundreds of years, because it
is possible to observe them with the naked eye. They are regions of the photosphere that
appear darker than their surroundings, and they occur because the strong magnetic field

2NASA/MSFC/David Hathaway. [online] Available at: http://solarscience.msfc.nasa.gov/dynamo.shtml
[Accessed 23/04/2012]
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Figure 3: The distribution of the Sun’s magnetic field over time. Magnetic field lines
directed ito the Sun are blue, those directed out of the sun are yellow. Image credit:
NASA/MSFC/David Hathaway2

in active regions inhibit the convective transfer of heat from the solar interior (Thomas
and Weiss, 2008, p2). The core of a sunspot (called the umbra) ranges from 1000-1900K
cooler than the rest of the photosphere. Sunspots generally lie within 40◦ of the equator
(Thomas and Weiss, 2008, p20). According to Strassmeier (2009), starspots can be much
larger than sunspots, and appear at higher latitudes. Sunspots have lifetimes ranging
from hours to months (Solanki, 2003), but there is evidence to suggest that active regions
on other stars can live for many years (Strassmeier, 2009).

Sunspots are accompanied by nearby, bright patches called faculae. Faculae are hotter
than the surrounding photosphere (Thomas and Weiss, 2008, p126) and their prevalence
varies in phase with the solar cycle, discussed below. The extra luminosity from faculae
has a greater effect than the loss caused by spots on older stars, like the Sun, but it
appears the reverse is true on younger stars (Radick, 2003).

3.3.2 The Solar Cycle

As mentioned in section 3.2.4, the Sun’s magnetic field varies in strength over a twenty-
two year cycle. Since sunspots are caused by the magnetic field inhibiting energy transfer
through convection, a stronger magnetic field results in more sunspots and faculae. Be-
cause of this, total solar irradiance varies in phase with the changes in the magnetic
field. Since it is the strength, not direction, of the magnetic field that causes variation,
irradiance follows an eleven year cycle rather than twenty-two.

Figure 43 contains two plots that demonstrate the solar cycle. The bottom panel shows
the area of the solar hemisphere covered by sunspots since 1880. The eleven year cycle
is clearly visible. There is also much greater variation during solar maxima, with many
sharp spikes. In contrast, solar minima are consistently empty. The top panel shows the
so-called butterfly diagram, which shows that sunspot positions vary over the solar cycle,

3NASA MSFC, 2011. The Sunspot Cycle. [online] Available at:
http://solarscience.msfc.nasa.gov/SunspotCycle.shtml [Accessed 09/10/2011].
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starting at high latitudes and moving down towards the equator over the course of the
cycle. They fade out at solar minima, before re-appearing again at high latitudes.

Figure 4: Upper Panel : Butterfly diagram showing the position of Sunspots since 1880.
Lower Panel : Area of the visible solar hemisphere covered by sunspots over the same
period.3

Many Kepler target stars have magnetic fields, so it is likely that they will have similar
cycles. The length of the mission should ensure that any given star does not stay at its
minimum throughout, and the discovery of the steady increase or decrease in variability
would be an interesting result.

3.3.3 Pulsations

Another cause of variation in stars is pulsations, the study of which subject is called
asteroseismology. These pulsations are essentially standing sound waves within the star
(Ostlie and Carroll, 1996, p549). The simplest modes are purely radial, but more compli-
cated modes exist. The pulsations cause changes in the temperature of the star, which in
turn affects its luminosity. Pulsations generally occur on a timescale shorter than those
of interest here.

3.3.4 Age-Activity-Rotation Relation

Almost all cool stars, including the Sun, have magnetic fields produced by an internal
dynamo (Güdel, 2007). Güdel also presents evidence that the Sun was far more active
when it was younger, as more rapid rotation induced a more efficient magnetic dynamo.
This resulted in stronger magnetic fields which led to greater variability. Soderblom et al.
(1993) discusses the loss of angular momentum over the lifetime of a star, as the star
loses angular momentum through its wind. Since rotation affects magnetic activity, there
is an overall connection between age, activity and rotation of stars. Young stars tend to
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rotate rapidly, resulting in stronger magnetic fields and greater variability. Over time, the
rotation slows down, leading to weaker magnetic fields and reduced variability. Barnes
(2007) describes a technique called gyrochronology that uses this relationship to determine
the age of stars with errors of roughly 15%.

4 The Kepler Mission

4.1 Introduction

On 6th March 2009, the Kepler Mission was launched. It is part of NASA’s Discovery
Programme4, aimed at relatively low cost, science-oriented missions. Its primary purpose,
described by Koch et al. (2010), is exoplanet detection. Specifically, it was designed to
be able to detect Earth-sized planets within the habitable zones of Sun-like stars (stellar
classes F, G and K), and to determine their orbital period and other characteristics. The
mission will also generate data of value to other fields, including asteroseismology. In
order to achieve this, the photometric output of stars must be continually measured. It
measures light primarily in the visible spectrum (although the full range stretches from
around 300nm to around 1000nm - see Koch et al. (2010)).

Figure 5 shows a computer generated image of the Kepler Space Telescope5.

Figure 5: The Kepler Space Telescope. Credit: NASA5

Figure 6 is a picture of the Milky Way galaxy, showing the position of the Solar
System and search space of the Kepler mission6.

4http://discovery.nasa.gov/index.cfml
5NASA. Artist’s rendition of Kepler in space. [online] Available at:

http://www.redorbit.com/news/space/1650645/after launch kepler prepares to carry out its mission/
[Accessed 17/03/2012].

6Jon Lomberg. Kepler search space. [online] Available at: http://www.jonlomberg.com/profile.html
[Accessed 17/03/2012].
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Figure 6: A map of the Milky Way, showing the position of the Solar System and the
search space of the Kepler Mission. Credit: Jon Lomberg6

4.2 Mission Parameters

Koch et al. (2010) describe the scientific goals of the mission, and their influence on
mission design. Several requirements were identified to enable the mission to fulful these
goals.

The first requirement was a mission length of at least 3 years. This is necessary to
ensure measurement of the three planetary transits required for confidence, as an Earth-
like planet around a Sun-like star would have an orbital period of about a year. A second
requirement was to observe at least 100,000 Sun-like stars. Planetary transits can only be
detected photometrically if the planet passes between the star and the Earth. This places
severe constraints on the orbital alignment, to the extent that an enormous number of
stars must be monitored to find even a few planets. Other requirements concerned high
photometric precision and a low level of photometric noise. The mission must be sensitive
enough the be able to detect the change in the photometric output of the Sun that would
be caused as the Earth passes in front of it.

4.3 Relevance

A mission designed with these goals in mind is clearly also ideal for the study of stellar
microvariability. The requirements of these two branches of astronomy are largely identi-
cal, because they involve making exactly the same measurements - the changing output of
stars - albeit due to different causes. The data set for studying stellar microvariability is
also far larger than that for planetary transits, because, for the reasons described above,
planetary transits are only detectable on a minority of stars. The inherent variability of
stars actually presents a problem for the detection of exoplanets by providing another
source of noise. A better understanding of this variability will therefore aid in the detec-
tion of exoplanets as it may allow more effective removal of such signals from planetary
transit data.
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5 Methods for period finding

5.1 Introduction

The main motivation of studying stellar lightcurves is to find intrinsic periodicities. Vari-
ation resulting from the rotation of the star, eclipses, or pulsations, should repeat on a
given timescale. While these periodicities are sometimes obvious upon a simple visual
examination, quantitative mathematical methods are preferred for several reasons. They
remove any observer bias, and allow errors to be generated in a repeatable and consistent
manner, and allow automation. Several different methods for period finding were used
in this project, including periodograms, continuous wavelet transforms, phase dispersion
minimisation and information entropy minimisation.

To demonstrate the respective strengths and weaknesses of the various methods, their
performance will be tested against several artificial lightcurves. These signals are shown
in Figure 7. Lightcurve A is a simple sinusoid with a fixed frequency, Lightcurve B’s fre-
quency increases over the course of the signal, Lightcurve C’s frequency changes abruptly
halfway through the signal, and Lightcurve D is a superposition of a high frequency and
a low frequency signal. The frequencies present in each lightcurve, and the corresponding
periods, are shown in Table 1.

Signal Frequencies (1/days) Periods (days)
A 0.005 200
B 0.0030 to 0.0093 333 to 108
C 0.0064 then 0.0200 157 then 50
D 0.01 and 0.10 100 and 10

Table 1: The frequencies and periods present within the artificial lightcurves shown in
Figure 7.

5.2 Periodograms

5.2.1 Introduction

Periodograms are a widely used method for finding periodicities within signals. The
classical periodogram is simply a normalised discrete Fourier transform. For a data set
{X(ti), i = 1, 2...N0}, the classical periodogram (Schuster, 1898) is defined as

PX (ω) =
1

N0

∣∣∣∣∣∣
N0∑
j=1

X(tj) exp(−iωtj)

∣∣∣∣∣∣
2

. (1)

This works because the presence of a period within the data means Xt and exp(−iωt)
are in phase at that period, and so the sum results in a large value of PX . Where there
is no period, the terms are randomly positive and negative, resulting in a small value of
PX . PX is often referred to as the power.

Due to statistical difficulties and issues with spectral leakage, Scargle (1982) proposed
an alternative definition, namely
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(a) Lightcurve A (b) Lightcurve B

(c) Lightcurve C (d) Lightcurve D

Figure 7: Four different artificial lightcurves to demonstrate the performance of different
methods for period finding.

PX (ω) =
1

2


[∑

j Xj cosω (tj − τ)
]2

∑
j cos2 ω (tj − τ)

+

[∑
j Xj sinω (tj − τ)

]2
∑
j sin2 ω (tj − τ)

 , (2)

where

tan (2ωτ) =

∑
j sin 2ωtj∑
j cos 2ωtj

. (3)

This happens to be exactly equivalent to the reduction of the sum of squares in least-
squares fitting of sine waves to the data. It also has simple statistical behaviour and is
only slightly more computationally intensive.

Despite this redefinition, improvements can still be made. The Lomb-Scargle Peri-
odogram does not account for measurement errors, and it contains the implicit assump-
tion that the mean of the signal and the mean of the fitted sine wave are the same. To
counter both of these issues, Zechmeister and Kürster (2009) introduce a Generalised
Lomb-Scargle Periodogram, which solves both these issues.
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To provide a measure of the errors of the periodogram, Scargle (1982) describes a
False Alarm Probability, which is the probability of a peak of a particular height being
generated by a random signal containing no periods. False positives occur with probability
p0 at a power z0, where

z0 = − ln
[
1− (1− p0)1/N

]
(4)

and N is the number of frequencies searched for the maximum. For a target value of
p0, equation 4 tells you the required power.

To implement the Lomb-Scargle Periodogram, a range of frequencies was calculated
to the desired level of sampling. The power at each frequency was calculated using
Equation 2. These were then plotted against each other to produce a power spectrum.

5.2.2 Examples

To demonstrate the performance of the periodogram, Figure 8 shows a Lomb-Scargle
periodogram for each of the artificial lightcurves from Figure 7. The frequencies of the
signals actually present within the lightcurves (and the corresponding periods) are shown
in Table 1 for reference. All the results in this section are quoted with uncertainties.
These are calculated using the procedure described in Section 5.2.3.

Lightcurve A is a basic sinusoid with a fixed frequency of 5.0 × 10−3 days−1. The
periodogram recovers a frequency of (4.98± 0.68)× 10−3days−1, correctly identifying the
frequency present. While encouraging, it should be remembered that the signal consists
of one signal and no noise, so it is the most trivial of cases.

Much less trivial is lightcurve B. Here, the frequency of the signal changes with time,
moving linearly from 3.00 × 10−3 to 9.30 × 10−3 days−1 over the course of around 600
days. The resulting periodogram has a very wide, fairly symmetric peak, which returned
the result of (7.17± 2.22)× 10−3days−1, meaning the uncertainties quoted for lightcurve
B are too small to cover the entire range of frequencies present. The method used to
calculate uncertainties provides an underestimate in the case of changing frequencies.
This is less important than it might seem initially for two reasons. First, as will be
seen in Section 5.3, another method, the Continuous Wavelet Transform, clearly shows if
frequencies are changing. The other mitigating factor is the sheer size of the frequency
change in lightcurve B: the frequency more than triples across the lightcurve. This is far
greater than any frequency change that would be expected from an actual star.

Lightcurve C starts off as a simple sinusoid with a frequency of 6.40×10−3 days−1, but
halfway through it abruptly switches to a sinusoid with a frequency of 20.00×10−3 days−1.
The periodogram recovers frequencies of (6.19± 1.41)× 10−3days−1 and (19.99± 1.33)×
10−3days−1 , so it seems to be performing well. However, the periodogram can provide
no indication of when the frequencies are present. A very similar periodogram would be
expected from a lightcurve where these two frequencies are superposed throughout.

Lightcurve D contains just such a case, where frequencies of 10.0 and 100.0 days−1 are
superposed throughout. The periodogram has spikes at (10.00± 0.68)× 10−3days−1 and
(100.00± 6.80)× 10−3days−1 , showing it can recover the correct frequencies, but there is
no way of knowing it is not a result of an abrupt change like the one present in lightcurve
C.
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(a) Lightcurve A (b) Lightcurve B

(c) Lightcurve C (d) Lightcurve D

Figure 8: Lomb-Scargle Periodograms of the test signals from Figure 7.

5.2.3 Uncertainties

An advantage of periodograms is that they allow the identification of a specific period
within a signal, by locating the peaks in the power spectrum. It is always important to
be aware of the limitations of the method and quote results with uncertainties.

The periodograms of the artificial lightcurves (see Figure 8) provide some useful infor-
mation for this purpose. It is expected that it would be possible to quote the frequency
of lightcurve A to much greater accuracy, since lightcurve B does not have a fixed fre-
quency. The peak of lightcurve A, which has a fixed frequency, is far narrower than that
of lightcurve B, where the frequency changes throughout the lightcurve. This indicates
that the width of the peak is related to the uncertainty. This relationship can be used to
estimate the uncertainty in the position of the peak in the power spectrum.

In order to do this, a Gaussian is fitted to the peak (using a Trust-Region-Reflective
algorithm, see e.g. Coleman and Li (1993)). The peak of the Gaussian is used as the
detected frequency, and the Full Width Half Maximum (FWHM) is used to calculate the
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upper and lower bounds of the uncertainty.
Another tactic that was used to estimate the uncertainties in the positions of pe-

riodogram peaks was the bootstrap method (e.g. Davison and Hinkley (1997)). This
method involves replacing a certain proportion of data points with data points selected
randomly from the data. The periodogram is then calculated again and compared to the
original. This is repeated a large number of times.

The idea behind this method is to see how robust a result is by changing the data it
was calculated from. However, when it was implemented, it was found that the results
were incredibly robust, and hardly changed, even when 20% of the data was replaced.
The frequencies found by the different repeats were plotted on a histogram, and then a
Gaussian fitted to that. Again, the FWHM of the Gaussian was used to estimate the
error.

An example will be used to demonstrate this. Using any of the artificial lightcurves in
their current form is flawed, because (with the exception of Lightcurve B), they all contain
perfect sinusoids in various guises. As a result, it is expected that the periodogram should
perform very well, since it is equivalent to a least squares fitting of sinusoids to the data.
In contrast, real stars are very different. Many more signals may be present, random noise
certainly will be, and the measurements may not be perfectly uniformly distributed in
time. In addition, physical signals may not be perfect sinusoids.

Figure 9: An adapted version of Lightcurve A, used to compare the two possible methods
of error analysis.

To reflect these issues, Lightcurve A was adapted to provide a more realistic test
subject. First, normally distributed noise (with a mean of 0 and a standard deviation
of 0.1) was added to the data. Subsequently, each data point was moved in time by a
normally distributed random number (with a mean of 0 and a standard deviation of 0.3
days), ’destroying’ the perfect sinusoid within the data. The adapted Lightcurve A is
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plotted in Figure 9.
This adapted lightcurve was subjected to Lomb-Scargle periodogram analysis and both

methods were used to estimate the uncertainty. First, Gaussians were fitted to each peak
of the periodogram and the FWHM calculated to provide the uncertainty. A plot of the
periodogram with the fitted Gaussian is shown in Figure 10.

Figure 10: A Lomb-Scargle Periodogram for the adapted Lightcurve A (blue continuous
line), with a Gaussian fitted to the peak (red dot-dash line) for error estimation.

The FWHM of the fitted Gaussian gives an value for the frequency as (4.98± 0.70)×
10−3days−1. Recall that the original lightcurve contained a frequency of 5.00×10−3days−1,
but since each data point has been shifted by a small random amount, it is now impossible
to quote a specific frequency within the signal.

The second method that was tried was the bootstrap method, described above. 20% of
points were replaced each time, and 1000 repeats performed. Figure 11 shows a histogram
of the distribution of the frequencies of peaks in the Lomb-Scargle periodogram. This has
also been fitted with a Gaussian to allow the FWHM to be used to estimate the error.

The fitted Gaussian gives a value of the frequency as (4.99±0.06)×10−3days−1. Given
that the frequency of 5.00×10−3days−1 no longer exists exactly within the frequency, this
is a worryingly small error margin. It is also worth noting that 20% is a very high
proportion of data points to replace. 10% is a more common choice, but if used here the
periodogram returns the same peak every single time. Admittedly, the possible positions
for the peaks are limited by sampling, but given that the perfect signal no longer exists
within the lightcurve, the author is very skeptical about the results obtained using the
bootstrap method.

As a result of this it was decided to use the first method (fitting Gaussians to pe-
riodogram peaks) to estimate the errors in frequencies found by the Lomb-Scargle peri-
odogram. Quite apart from giving suspiciously small errors, it is extremely computation-
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Figure 11: A histogram showing the distribution of peak frequencies from the Lomb-
Scargle Periodogram when subjected the the bootstrap method with 1000 repeats and
20% replacement. A Gaussian has been fitted (in red) to allow estimateion of errors.

ally intensive. Another factor to consider is that the levels of accuracy provided by the
simpler method are more than sufficient. There is little point trying to measure periods
in target stars with supreme accuracy. Obtaining periods with errors of order unity (in
days) will be more than enough for the analysis of period distribution throughout the
data set, and speculative interpretations of individual targets.

5.3 Continuous Wavelet Transform

5.3.1 Introduction

Another method used to identify periods within a signal is the continuous wavelet trans-
form. This method allows the decomposition of a time series into time-frequency space,
allowing simultaneous analysis of the dominant periods that exist within a signal, and
how these change over time (Torrence and Compo, 1998).

The Continuous Wavelet Transform of a discrete sequence Xj is defined as the convo-
lution of Xj with a scaled and translated version of the wavelet function, ψ0:

Wj(s) =
J−1∑
j′=0

xj′ψ
∗
[

(j′ − j)δt
s

]
(5)

where s is the wavelet scale, n is the localised time index and δt is the time seperation
of data points. The wavelet function must be localised in both time and frequency space
and have zero mean (Farge, 1992). A popular choice of wavelet function, and the one
used here, is the Mortlet Wavelet. This is a plane wave modulated by a Gaussian and is
defined as
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ψ0(η) = π−1/4eiω0ηe−η
2/2 (6)

where ω0 is the nondimensional frequency, taken to be 6 to satisfy the conditions
described above, and η is the non-dimensional time. Note that Equation 5 contains the
term ψ∗, rather than ψ0 from equation 6, to reflect that it has been normalised and the
complex conjugate used.

The continuous wavlet transform was implemented using wavelet software was pro-
vided by C. Torrence and G. Compo, which is available at
URL: http://paos.colorado.edu/research/wavelets/.

5.3.2 Examples

A Continuous Wavelet Transform was performed on the artificial lightcurves from Fig-
ure 7. The results are shown in Figure 12.

(a) (b)

(c) (d)

Figure 12: Continuous Wavelet Transforms of the test signals from Figure 7.

The wavelet for lightcurve A is very simple to analyse. A strong band of power is
present around the correct frequency of 5.00 × 10−3days−1. The fact that it stretches
across the whole time indicates the signal is present throughout, which is correct. The
power band is fairly wide, so recovering the exact frequency present is challenging.
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Lightcurve B produces a very interesting wavelet. There is a clear upward trend to
the band of power, showing the increase in frequency over the course of the signal. It also
stars and ends around the correct frequencies, clearly indicating that the wavelet is an
appropriate tool for tracking signals that change with time. Again, the wide power band
makes the precise detection of signals difficult.

The wavelet’s ability to present both frequency and time information simultaneously
is also important for lightcurve C. There are areas of high power present in each half of
the signal, showing the correct frequency and enabling us to detect the abrupt change.

Lightcurve D shows two separate bands of power at the correct frequencies, across
the whole time period. This shows it can cope with superposed signals. The greater
power of the band for the lower frequency is to be expected, as the lower frequency signal
within the artificial lightcurve is the more powerful of the two. The marked difference
between the wavelets for lightcurves C and D, especially considering the similarity of
their periodograms, shows the value of the wavelet in interpreting lightcurves containing
multiple frequencies.

5.4 Phase Dispersion Minimisation

5.4.1 Introduction

Another common technique for identifying periods within signals is Phase Dispersion
Minimisation (PDM) (Stellingwerf, 1978). This involves ’folding’ the lightcurve around a
trial period. To achieve this, define a phase vector φ, given by

φ = t mod (Π) (7)

where Π is the trial period. Plotting the lightcurve against φ rather than t will yield
a ’folded’ lightcurve. The folded lightcurve is then sampled by selecting all the points
within a small window in φ.

Consider a set of N measurements, where the jth measurement is given by (Xi, tj).
The variance of the whole sample is given by

σ2 =

∑
(Xj − x̄)2

N − 1
(8)

where x̄ is the mean of the measurements. Each selected window has a variance sj,
and M windows have been selected. Not all points need to be selected, and a point can
belong to more than one window. A common choice, also used here, is to fit fixed windows
across the whole folded lightcurve. The overall variance for all the samples is given by

s2 =

∑
(nj − 1)s2j∑
nj −M

. (9)

If our chosen value of the trial period Π does not match any periods within the data,
we expect s2 ≈ σ2, but we have found an existing period, s2 should be much smaller
(Stellingwerf, 1978). We therefore define the quantity θ as

θ =
s2

σ2
(10)

and look for the minima when θ is plotted against Π to locate periods within the data.
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5.4.2 Examples

Figure 13 shows plots of the phase dispersion, θ against the trial period, Π, for the artificial
lightcurves shown in Figure 7.

(a) Lightcurve A (b) Lightcurve B

(c) Lightcurve C (d) Lightcurve D

Figure 13: Phase Dispersion Minimisation plots of the test signals from Figure 7.

Lightcurve A, the simple sinusoid, performs adequately. The correct period is identified
by a minimum at 200 days. However, the trough is extremely wide, considering the
lightcurve is a perfect sinusoid with only one frequency and no noise.

The changing frequency of lightcurve B also presents problems for the PDM. There is
no clear location of the frequencies within the signal, and a fairly deep and narrow trough
is present, which would seem to indicate the presence of a specific period, although none
exists within the lightcurve.

Performance is marginally better for lightcurve C. There is a fairly narrow trough
at the 50 day period, and a very wide one at the 157 day period. Aliasing is clearly a
problem, as the trough at 100 days is every bit as convincing as the correct one at 50.
This also manifests in the ’double dip’ of the wide peak. One is produced by the genuine
period at 157 days, the other at 150 days is another alias. Without the prior knowledge of
the signal that benefits us, identifying the correct period would be difficult. As with the
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periodograms, the PDM cannot provide information about which signals are significant
at different times within the data.

Lightcurve D again demonstrates the problems with aliasing. The period of 10 days
is correctly identified, but an alias is produced at every multiple of 10. There is a sharp
trough correctly located at 100 days, but another alias at 200 days. The analysis is not
too difficult for simple periods used in this example, but extracting useful information is
almost impossible if there are several periods whose aliases drift in and out of phase with
each other.

(a) 200 Day Period (b) 135 Day Period (c) 100 Day Period

Figure 14: Three examples of folding artificial lightcurve A (with some Gaussian noise
added). The left hand plot shows the folding around the correct period of 200 days, the
centre plot shows folding around an incorrect period of 135 days, and the right hand plot
shows folding around a 100 day alias.

Figure 14 demonstrates why the PDM suffers so badly from aliasing. It is obvious
from visual inspection that the left hand plot has found a period within the signal, since
each fold fits neatly onto the one before it, leaving large empty areas within the plot. In
contrast, when folded around an incorrect period, as in the centre plot, the data points
are spread relatively uniformly over the whole plot. In the right hand plot, the lightcurve
is folded around a period of 100 days, which is half of the true period. The figure is much
more ordered than other incorrect periods, and so the phase dispersion shows another
minimum. This also occurs at multiples of the correct period. For instance, folding
around 400 days would also show a clearly ordered lightcurve.

5.5 Information Entropy Minimisation

5.5.1 Introduction

Information Entropy Minimisation (IEM) (Cincotta et al., 1995) is similar in many ways
to Phase Dispersion Minimisation. Again, the lightcurve is folded by a trial period.
Instead of selecting windows in a given range of φ, as in PDM, windows are selected to
have a given range in φ and a given range in u, where the minimum point of the data is
mapped to u = 0, and the maximum to u = 1. Effectively, the folded lightcurve is split
into rectangles rather than into columns.

The probability of finding a data point in any given square, µi, is simply given by the
total number of data points divided by the total number of rectangles. Cincotta et al.
(1995) then state that the information entropy is given by
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S = −
m∑
i=1

µi ln(µi) (11)

where m is the number of rectangles that the folded lightcurve has been divided into.
If the trial period is wrong, the points tend to distribute evenly over the m squares, and so
the entropy is high. However, if the trial period is correct, then most of the m rectangles
will be empty, while a few will contain many points. This reduces the entropy. In the
same way as PDM, IEM identifies correct period by looking for dips in the plot of S
against the trial period.

5.5.2 Examples

Figure 15 shows the results of performing Information Entropy Minimisation on the arti-
ficial lightcurves from Figure 7.

(a) Lightcurve A (b) Lightcurve B

(c) Lightcurve C (d) Lightcurve D

Figure 15: Information Entropy Minimisation plots of the test signals from Figure 7.

Lightcurve A gives a fairly typical indication of the performance of the IEM. Much
like the PDM, it suffers from significant aliasing. A wide trough is present at the correct
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period of 200 days, but without prior knowledge it would be difficult to select this one as
correct and reject the others as aliases.

The performance of the IEM for Lightcurve B is more encouraging. While there are
no obvious troughs in the curve, lightcurve B has a contstantly shifting frequency so it is
not unexpected that no specific period is found.

Lightcurves C and D show very similar performance to lightcurve A. There are troughs
in the correct positions but they are no deeper or sharper than the many aliases, so it is
difficult to correctly identify periods without prior knowledge of the signal. As with all
methods discussed here except the Continuous Wavelet Transform, the IEM can provide
no information about when periods within the signal are significant.

It should be noted that Cincotta et al. (1995) shows examples of using Information
Entropy Minimisation that seem to provide much better performance than that shown
above. Periods are located by very narrow dips, and the correct period was much deeper
than its aliases. Despite the author’s best efforts, these levels of performance proved
impossible to reproduce.

5.6 Conclusions

Since finding periods within signals is a common requirement within physics, there are
many methods available to use in the analysis of Kepler data. Since Kepler data is high
cadence, there are a significant number of data points available for each target star. As
a result, ensuring sensible computation times requires some selectivity in the methods
employed, rather than simply applying every method available to the entire data set.

The first conclusion that was reached was that there was no advantage gained by
using the Generalised Lomb-Scargle Periodogram instead of the ordinary Lomb-Scargle
Periodogram (equation 2).There is almost no difference between the results of the two
methods, mainly because the errors in the measurements are all very similar, so weighting
points according to their error makes very little difference. In addition, a fast code
for performing an ordinary Lomb-Scargle periodogram was available from Press et al.
(1992). Computing the Generalised Lomb-Scargle periodogram took significantly longer,
and it was decided that the small performance improvement did not justify the extra
computation time.

The Continuous Wavelet Transform is also capable of providing useful information
about target stars. It is generally harder to recover a precise measurement of a period
than using a periodogram, but its performance on the artificial lightcurves (see Figures 7
and 12) demonstrate its superiority for analysing changing periods. This is because, unlike
the periodogram, it can provide information in both the frequency and time domains.

The other methods studied, namely Phase Dispersion Minimisation and Informa-
tion Entropy Minimisation, have many similarities. They are very different to the peri-
odograms and wavelet transform, which are both Fourier-based methods. Unfortunately,
their performance was poor and it was impossible to distinguish significant periods from
their aliases.

All these factors led to the generation of a fairly standard approach for finding peri-
ods. The lightcurves were analysed using a Lomb-Scargle periodogram and a Continuous
Wavelet Transform. The former provides specific measurements with errors, while the
time-domain information provided by the latter is extremely valuable.
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6 Solar Data & Analysis

6.1 Motivation for studying Solar Data

Before starting to work with light curves from the Kepler mission, it is important to
spend some time considering the the performance of the chosen methods on actual data,
rather than the idealised signals used in Section 5. The Sun represents a useful test case.
Due to its proximity, its characteristics are well known. By restricting ourselves to basic
irradiance data of the same type that will be available for Kepler targets, we can test the
accuracy of our analysis methods before subjecting them to our main data.

6.2 Sources of Solar Data

Three sources of data were used for the Total Solar Irradiance (TSI). The first was the
PMOD composite7 (see e.g. Fröhlich (2006)), selected because it provides data over a
significant timescale, dating back to 1978. This is beneficial as it allows study over the
entire solar cycle. It also enables searches for the well known 11-year solar cycle as a test
of the performance of various methods.

The second set of data comes entirely the VIRGO instrument on the SoHO spacecraft8

(see e.g Fröhlich et al. (1997)). This data is especially useful because it is high cadence,
similar to the data from the Kepler mission. This makes it relevant to the study of
achieving good results without requiring excessive computation time.

The final source of data was from the Total Irradiance Monitor (TIM)9 (see e.g. Kopp
and Lawrence (2005)). This again is daily cadence data with an extremely high signal to
noise ratio.

Figure 16 shows the three data sets used in the analysis of the Sun. It very clearly
shows the well known eleven year solar cycle over which sunspot numbers (among other
things) vary. It is particularly visible in the PMOD data (red) due to the greater timescale
available. Both other sets of data are clearly a similar shape to the PMOD lightcurve.
Despite being the same shape, the values are clearly displaced vertically from each other.
This is a result of being measured by different instruments. For the purposes of this
discussion, this difference does not matter, as it is the changes in the value which are of
interest.

6.3 The Solar Cycle

A useful first test of our methods is to try and recover the well known 11 year solar
cycle. This is clearly visible to the eye in Figure 16 so it should appear very strongly in
a periodogram or wavelet of the data.

Figure 17 shows a Lomb-Scargle Periodogram for the full PMOD composite data set.
There is a very clear peak at a frequency of (2.49± 0.38× 10−4)day−1, which corresponds
to 4014+732

−536 days, or 11.00+2.01
−1.47 years. The Lomb-Scargle periodogram has easily recovered

the solar cycle, although the uncertainties present are significant. There are mitigating
circumstances, however. It is clear from a visual inspection of the PMOD Composite

7Data (version d41 62 1111) from PMOD/WRC, Davos, Switzerland. Unpublished data from the
VIRGO Experiment on the cooperative ESA/NASA Mission SoHO

8Data (version6 002 1102) from VIRGO Team through PMOD/WRC, Davos, Switzerland. Unpub-
lished data from the VIRGO Experiment on the cooperative ESA/NASA Mission SoHO

9Data obtained from http://lasp.colorado.edu/sorce/data/data product summary.htm
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Figure 16: Plot showing the three sets of solar data used to test methods prior to their
application to Kepler data: the PMOD composite (blue), high cadence data from VIRGO
(green), and daily values from the Total Irradiance Monitor (red).

Figure 17: A Lomb-Scargle Periodogram of the full PMOD Composite Solar data set.

data in Figure 16 that the cycle decreases in frequency across the data available here.
Indeed, at one point an attempt was made to remove the solar cycle from the data (with
the aim of detecting other frequencies more easily), but it proved impossible because of
this frequency change. It is unsurprising that a changing frequency results in greater
uncertainties in the measurement.

Figure 18 shows the continuous wavelet transform of the full PMOD Composite data
set. There are numerous results of interest within the image. Firstly, there is a very
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Figure 18: A Continuous Wavelet Transform of the full PMOD Composite Solar data set.

strong period of around 4000 days (about 11 years) for the length of the data set. This
slopes downwards slightly, indicating the cycle is getting longer, supporting the earlier
statements.. Finally, there is some power between around 10 and around 400 days in
three distinct regions throughout the data. Again, comparison to Figure 16 reveals that
these correspond to the Solar maxima; the times with the most variability. In contrast,
the solar minima show no variability on these timescales.

6.4 Rotation Period

When looking at Figure 18, there is little evidence for a signal of around 27.3 days corre-
sponding to the Carrington rotation period (the rotation period of the Sun when viewed
from Earth) (Javaraiah and Gokhale, 2002, p31). There is some power visible during solar
maxima, but it occurs over a wide range of periods. Equally, there is no meaningful spike
in the periodogram in Figure 17 (although the axis is not long enough to show a spike at
this frequency, rest assured there is nothing there). Inability to locate the rotation period
on the Sun would be a worrying limitation for the analysis of Kepler data.

With some experimentation, it was discovered that the periodogram performs well
when the length of the data set is of the order of a few times the desired period. Figure 17
has a data length of the order of 400 times the Carrington rotation period, so failing to
find it is not unexpected. In contrast, it is approximately three times the length of the
eleven year solar cycle, which is found very strongly.

In order to try and recover the solar rotation period, a different approach was used.
The following analysis used the data from the Total Irradiance Monitor. This data set was
chosen because it has a timespan that is more than sufficient, and has an extremely high
signal no noise ratio. The data set was split up into windows of 80 days each, and a Lomb-
Scargle Periodogram performed on each. The significant frequencies in each window were
recorded. These were plotted on a histogram, weighted by power (i.e. a frequency in one
window with a power of 1000 will appear the same as five different windows containing the
same frequency with a power of 200 each time). This is shown in Figure 19. A frequency
was classified as significant if it was the frequency with the greatest power in its window,
and the power was sufficient that the false alarm probability was less than 0.01.
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Figure 19: A power-weighted histogram of the most significant frequency in all the 80
days windows in the data from the Total Irradiance Monitor.

It is clear that the most power across all the 80 day windows is around the 27 day mark,
so by using 80 day windows is it possible to recover the solar rotation period. However,
some windows contained a strongest frequency that was wildly different to this, ranging
from 10 to 80 days. Since only a few windows of this length will be available for Kepler
targets, the histogram approach is unnecessary; periodograms for the different windows
can be compared directly. This does demonstrate that it will be difficult to be certain of
the rotation period of a target star based on 4 windows, as this would certainly not be
enough in the case of the Sun. However, many target stars may show greater irradiance
changes due to rotation, which would make the rotation period easier to identify. The
presence of large spots would be one feature that could have this effect.

7 Kepler Data Discussion

7.1 Available Data

The data available to use consists of 125 targets that were selected for the Kepler Guest
Observer Programme10. They were selected as they were thought to be part of a cluster,
and so would all be of the same age. It was later discovered that the cluster is extremely
disperse, to the extent that any results can only be assumed to be true for field stars. The
available target stars fall between a right ascension of 300.7◦ and 301.4◦, and a declination
of 44◦ and 44.3◦.

Steven Bloemen provided data for Kepler quarters 6, 7, 8 and 9, generated from his
mask algorithm (see Section 7.2. This data ranges from September 2010 to August 2011.

10http://keplergo.arc.nasa.gov/GOprogramScope.shtml
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Each quarter is approximately 90 days in length, but quarter 8 is closer to 70. Readings
are taken every 30 minutes.

It is important to note the limitations of the Kepler data. Some quarters are different
lengths, and some have fairly significant gaps between them. For these reasons, it was de-
cided to apply the chosen techniques to each quarter individually, rather than attempting
to concatenate them into a single lightcurve. It is also possible that concatenation would
reduce the effectiveness of the methods for the same reason that made the solar rotation
period difficult to find. When the length of the data set is orders of magnitude larger than
a period within the data, it becomes very difficult to identify it, as longer term signals
(whether physical or systematics) tend to dominate.

This has some implications for the analysis of Kepler lightcurves in Section ?? that
should be highlighted. The most important of these is that the figures for different quarters
stand alone with regard to normalisation. For instance, the lightcurves are plotted having
been median normalised, which allows the reader to easily see proportional changes in
the brightness of the target. Since the quarters are treated separately, each quarter is
normalised to the median of that quarter, not to the median of the whole lightcurve. A
similar limitation exists within the continuous wavelet transforms. The colour represents
the power, but only in comparison to the rest of that quarter. It is not possible to track
the changing power of a signal across multiple quarters.

While the fact that Kepler obervses its targets from space is a necessity for the require-
ments of the mission, it does introduce problems not faced by ground-based observatories.
There is a chance that the telescope’s field of view will drift slightly, and require the mis-
sion to make course corrections. These can manifest in the data as jumps or dips as light
from a target star is detected by different pixels. Another issue is raised by the need to
return data to Earth. Data downlinks take place every 30 days and result in a small gap
in the observations. A detailed discussion of instrument noise is given by Gilliland et al.
(2011).

7.2 Masks

7.2.1 Lightcurve production

The Kepler Telescope detects light from stars using Charged Coupled Detectors, or CCDs.
Photons hitting the detector cause electrons to be released, which can then be detected.
The number of electrons released is directly proportional to the number of photons that
hit the detector (as long as the device isn’t saturated), making measurements of flux very
straightforward.

CCDs contain arrays of pixels, each detecting the photons that hit them. Since
these pixels are small, photons from target stars spread out over many different pix-
els. Lightcurves are then produced by summing the photon count across many pixels.
Selecting which pixels to include, and which to reject, is important for the production of
good lightcurves. The pixels selected for any given target are referred to as the mask. A
description of the Kepler data pipeline is provided by Jenkins et al. (2010).

Figure 20 shows the mask for a target star, kplr008197767 (quarter 6). While it is clear
that each pixel has its own trends, the variation around this trend is consistent across all
the pixels. Summing the pixels together tends to reduce the trend, and linear trends are
not detected by the periodogram or wavelet, so there is no need to remove them.
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Figure 20: The mask for quarter 6 of kplr00197767. The colour of the pixel boundary
indicates when it was used. Green: used by the Kepler team and by Steven Bloemen.
Red or no border: Rejected by the Kepler team and by Steven Bloemen. Blue: used by
the Kepler team but rejected by Steven Bloemen.

7.2.2 The Importance of Mask Selection

Selecting the right pixels to use in the mask is extremely important. Any variability in a
target star should be visible across most (if not all) of the pixels in a mask. If this is not
the case, it implies that the variation is not intrinsic to the star, but is being introducted
somewhere else. Figure 21 is a good example of this.

Figure 21 shows the lightcurve for quarter 6 of kplr008263752. There are very sharp
and regular dips within the lightcurve, which were initially considered as candidates for
planetary transits, or a binary star system. However, when the mask was inspected (see
Figure 22), there was no evidence for these dips in the centre of the mask, where the flux
is greatest. The only pixels where these dips are visible are located on the right hand side
of the mask. Any sort of transit, or any variability intrinsic to the star, would be visible
in all the pixels. The conclusion is that the dips are some sort of instrumental error.
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Figure 21: The lightcurve for quarter 6 of target kplr008263752, showing intruiging dips
regularly spaced throughout the lightcurve.

Figure 22: The mask for quarter 6 of target kplr008263752. The dips are clear in pixels
to the right hand side of the mask, but there is no evidence of them elsewhere.
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8 Kepler Results

8.1 Abundance of different variability types

One of the main aims of this project was to gain an understanding of the distribution
of timescales of variability across the data set. To achieve this in an automated fashion,
the Lomb-Scargle periodogram was employed, as it allows specific periods to be returned.
While this is a fairly simplistic approach (as will be seen in Sections 8.2 and 8.3, the
simple number returned from the periodogram often hides important information that
can be detected using other methods), it is sufficient for the present purpose. It is far
more important is to ensure that the signals detected are physical, not systematic trends.

The basic approach taken involved performing a Lomb-Scargle periodogram of each
quarter of Kepler data, across all 125 targets available, and record the locations of the
peaks with periods of less than 50 days. This was done in an attempt to remove long
term systematics which often produce large peaks in the periodogram. Figure 23 shows
the distributions of the most powerful period in each quarter of data (left hand plot) and
the three most powerful periods in each quarter (right hand plot).

(a) Top one period (b) Top three periods

Figure 23: Distribution of Most Powerful Periods from the Lomb-Scargle Periodogram
for each quarter of data for all 125 targets. The left hand plot shows the most powerful
period in each quarter, the right hand plot shows the three most powerful periods in each
quarter.

Turning first to the single most powerful period in each quarter, and the distribution
is very uneven. Long periods (30 days and over) dominate the distribution, but even here
the distribution is uneven, with a few periods with many occurances and many periods
with none. This would suggest they are the result of systematics, rather than genuine
variability within the target stars. Indeed, two of the common frequencies are at 45 and
30 days - one half and one third of the length of each quarter. The 30 day period is likely
to correspond to the data downlinks, and the 45 day period could equally derive from a
regular Kepler activity.

If the search is broadened to the top three periods within each quarter, the distribution
looks much more encouraging. Between 1 and 20 days the distribution is reasonably
consistent, with no periods that never occur, and no periods that occur very regularly. In
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contrast, the distribution above 30 days remains very uneven. This is a good indication
that genuine variability is being detected below 20 days, while the majority of periods
above 30 days appear to be systematic. This also provides justification for discarding
periods greater than 50 days.

This result would suggest that the main source of variation being detected is due to
stellar rotation, although it is possible that some of the shortest frequencies are the result
of pulsations. This is not a particularly surprising result. Excluding the eleven year solar
cycle (which would be difficult to detect in comparable data for the Sun), rotation causes
the greatest changes in the brightness of the Sun.

It would also seem to imply that most of the stars in the data set are younger than
the Sun. As discussed in Section 3.3.4, younger stars tend to rotate more rapidly. Most
of the variability detected here is less than the solar rotation period of around 25 days
(Stenflo, 1990). Note that, unlike in Section 4, the Sun’s actual rotation period is the
relevent comparison, not the Carrington rotation period.

8.2 kplr008329696

Two specific targets have been chosen for a more detailed analysis. The first of these is
kplr008329696. According to the Kepler Input Catalogue (see Brown et al. (2011)), this
target is located at a right ascension of 300.788◦ and a declination of 44.245◦. Its effective
temperature is 5632K and its logG is 4.236cms−2. Its estimated radius is 1.323�. All
things considered, it is very similar to the Sun.

The lightcurves for kplr008329696 for quarters 6, 7, 8 and 9 are shown in Figure 27.
The first thing to notice is the presence of some longer term systematic trends present

within the data. No attempt has been made to remove them, as the methods used are
able to locate interesting frequencies despite these. The trends themselves can sometimes
be detected, but are usually obvious as they have much longer periods .

Figure 25 shows Lomb-Scargle periodograms for each of the available quarters for
kplr008329696. Note that although the code used to produce these figures operates in the
frequency domain (and hence errors are symmetric here), I will refer to the results found
in the time domain, as they are more intuitive. The first thing to notice is that all of the
periodograms have a large spike indicating a very long period (ranging from around 50
days to around 130 days). This is very long for a rotation period, and since it is fairly
typical of many Kepler targets, it is generally rejected as systematic trends. This analysis
is supported by the lack of consistency between quarters, while physical signals tend to
appear in similar places in several quarters. These systematic trends could stem from a
variety of factors, which are discussed in Section 9.

The other area of interest in Figure 25 occurs around the seven day mark. It is
especially encouraging that there is activity here in all four quarters of the lightcurve.
The actual periods found range from 6.30+0.15

−0.14 days to 8.49+0.36
−0.33 days, but the final three

quarters all contain a period of 7.37+0.30
−0.29. The consistency with which this period is found,

and the length of the period, make it an excellent candidate for a rotation period.
The periodograms also seem to imply that this period increases in strength throughout

the quarters (i.e. the power increases). However, analysis of the Continuous Wavelet
Transforms for the same quarters shows this is not really the case, and demonstrates one
of the weaknesses of periodogram analysis. These Continuous Wavelet Transforms are
shown in Figure 26.

Figure 26 in part supports the results found by the Lomb-Scargle periodograms shown
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(a) Quarter 6 (b) Quarter 7

(c) Quarter 8 (d) Quarter 9

Figure 24: Lomb-Scargle Periodograms for quarters 6, 7, 8 and 9 of target kplr008329696.

in Figure 25. There is certainly power present around the seven day mark in all four quar-
ters. However, the time information also provided by the Continuous Wavelet Transform
shows that this period is not constant and unchanging throughout, but instead varies
significantly. The regions with greatest power are near the start of quarters nine and
eleven.

This result has important consequences for the interpretation of kplr008329696. From
periodogram analysis alone, a possible conclusion would be that the star contained a
single long-lived active region whose spot coverage increases over the course of the data
available here. With the extra time information provided by Wavelet analysis, it is more
likely that active regions with lifetimes of a few rotations are present. This presence
of many different periods around the seven day mark could be explained by differential
rotation within the star, and active regions appearing at slightly different latitudes.

8.3 kplr008264134

Another target selected for further analysis is kplr008264134. This star is again similar
to the Sun, with a radius of 1.61� and an effective temperature of 4970K. It is located at
a right ascension of 300.882◦ and a declination of 44.133◦. Again, these values are taken
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(a) Quarter 6 (b) Quarter 7

(c) Quarter 8 (d) Quarter 9

Figure 25: Lomb-Scargle Periodograms for quarters 6, 7, 8 and 9 of target kplr00826413.

from the Kepler Input Catalogue (see Brown et al. (2011)). The lightcurves for quarters
7, 8, 9 and 10 of kplr008264134 are shown in Figure 27.

It is clear that the lightcurves for kplr008264134 (Figure 27) are generally less effected
by the longer term systematics than those for kplr008329696 (Figure 24). As discussed
in Section 7.2, these are a result of trends in the individual CCD pixels. These tend to
cancel out to some extent when they are combined into a lightcurve, but some lightcurves
cancel them out better than others. The result of this is that, while the most powerful
frequency found for kplr008329696 was generally a systematic, this might not be the case
for kplr008264134.

Lomb-Scargle periodograms for kplr008264134 are shown in Figure 28. Previous spec-
ulation that systematics should be less powerful than physical signals appear to be justi-
fied. In quarter 9 especially, the lack of systematic trends produces an exceptionally clear
periodogram with very little power anywhere above around 20 days.

Throughout all four quarters, the periodograms show a very strong period of 11.14+0.99
−0.85

days. The final three quarters also show a much weaker period of 5.58+0.37
−0.30 days. This is

supported by a visual inspection of the lightcurve, which suggests there is another period
present. This is easiest to see in the unusually shaped peaks and troughs within the more
obvious signal. For example, the first three peaks of quarter 9 are all different shapes,
which implies the presence of a second signal moving out of phase with the main one.
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(a) Quarter 6 (b) Quarter 7

(c) Quarter 8 (d) Quarter 9

Figure 26: Continuous Wavelet Transforms for quarters 6, 7, 8 and 9 of target
kplr00826413.

The location of this signal highlights the advantage of using mathematical techniques
such as the Lomb-Scargle periodogram for this analysis. The strongest frequencies in
both kplr008329696 and kplr008264134 are immediately obvious upon visual inspection,
and a fairly accurate period could be determined by eye. However, while an observer
may identify the presence of a second period within kplr008264134, reliably finding its
timescale would be impossible.

Figure 29 shows the Continuous Wavelet Transforms for the four quarters of kplr008264134.
There is a very clear band of power corresponding to the 11.14 day period located by the
periodogram. As discussed in Section 7, it is not possible to track the strength of the
signal from one quarter to another, but it clearly decreases in strength across quarter 8
and increases again over quarter 9, which is confirmed by a visual inspection.

There is limited evidence to support the 5.58 day period found by the periodogram.
There is some power in the correct region of most of the quarters, but it is nothing like
as clear as the 11.14 day period. Given the respective strengths of the spikes in the
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(a) Quarter 6 (b) Quarter 7

(c) Quarter 8 (d) Quarter 9

Figure 27: Lomb-Scargle Periodograms for quarters 6, 7, 8 and 9 of target kplr008264134.

periodograms, this is not a particularly surprising result.
To a level of accuracy far greater than the uncertainties in the periodogram, the shorter

period is half the length of the longer one. A possible interpretation of these results is
that kplr008264134 is a star with an 11.14 day rotation period and a large active region.
If there is a smaller active region on the opposite side of the star, then this could introduce
variation on the timescale of half the rotation period, as seems to be the case.

9 Conclusions & Further Work

The main aim of this project was to study stellar microvariability in Sun-like stars using
data from the Kepler Mission. It was hoped that an understanding could be gained of
the timescales of variability and how they are distributed throughout the available target
stars.

Initially, various mathematical methods of finding regular periods within data were
studied. These included periodogram analysis, Continuous Wavelet Transfroms, Phase
Dispersion Minimisation (PDM) and Information Entropy Minimisation (IEM). To test
the effectiveness and reliability of these methods, and to highlight any weaknesses, they
were tested on a series of artificial lightcurves.
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(a) Quarter 6 (b) Quarter 7

(c) Quarter 8 (d) Quarter 9

Figure 28: Lomb-Scargle Periodograms for quarters 6, 7 , 8 and 9 of target kplr00826413.

It was discovered that periodogram analysis was a useful technique. The Lomb-Scargle
periodogram (Scargle, 1982) was selected over the more basic classical periodogram be-
cause of its improved performance. A further modification, the Generalised Lomb-Scargle
periodogram (Zechmeister and Kürster, 2009), was rejected because its marginal perfor-
mance improvements did not justify the extra computation time. It was also found that
fitting Gaussians to the peaks of the periodogram was a suitable method of estimating
the uncertainty in located frequencies, while the bootstrap method seemed to drastically
underestimate the uncertainties. It was also vastly more compuationally expensive to
perform.

The major weakness of the Lomb-Scargle periodogram was the lack of time-domain
information provided. This was mitigated by the positive performance of the Con-
tinuous Wavelet Transform (Torrence and Compo, 1998), which was able to provide
time-domain and frequency-domain information simultaneously, allowing frequencies that
change throughout the data to be tracked.

The performances of the PDM and IEM methods were less encouraging. While it
was possible to identify some frequencies, it was almost impossible to distinguish between
the true frequency and its aliases. However, the folded lightcurves used in this method
proved to be a useful visual aid to confirm frequencies found using the periodogram or
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(a) Quarter 6 (b) Quarter 7

(c) Quarter 8 (d) Quarter 9

Figure 29: Continuous Wavelet Transforms for quarters 6, 7, 8 and 9 of target
kplr00826413.

the wavelet.
The Lomb-Scargle Periodogram and the Continuous Wavelet Transform were applied

to data from the Sun to demonstrate their ability to recover known results. The eleven
year solar cycle was recovered from the PMOD Composite data, and evidence for the
Carrington rotation period was found within data from the Total Irradiance Monitor.

Before applying the Lomb-Scargle Periodogram and the Continuous Wavelet Trans-
form to the Kepler data, it was decided to leave the data in its 90 day quarters rather
than attempting to concatonate it into a single lightcurve. This was partly due to the
prescence of gaps between some of the quarters, but also because it becomes harder to
detect frequencies when the data set is orders of magnitude longer than the relevent pe-
riod, as demonstrated by the inability to find the solar rotation period in the PMOD
composite.

When plotting distributions of the most powerful and the three most powerful periods
within each quarter of data, it appeared that most periods over 30 days were due to
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systematics. There was a fairly even spread of periods between one and twenty days.
This suggests that much of the variability detected was due to stellar rotation, although
some of the shorter periods may be from pulsations.

Two targets were selected for a more detailed analysis. kplr008329696 is a star slightly
larger and hotter than the sun, and it was found that a period of 7.37+0.30

−0.29 was consistently
found in three of the four quarters, making it an excellent candidate for the rotation
period. Time-domain information from the Continuous Wavelet Transform seemed to
suggest that the variation could be caused by large active regions with lifetimes of a few
roations.

kplr008264134 is slightly larger and slightly cooler than kplr008329696. It was found
to have a strong period of 11.14+0.99

−0.85 and a much weaker one of 5.58+0.37
−0.30, which is half

of the strong period. A possible interpretation of this would be one large and one small
active region, on opposite sides of the star.

This project could be extended in a number of ways. Firstly, access to a much greater
proportion of Kepler ’s data set would allow the conclusions drawn about the distribution
of variability timescales to be tested much more thoroughly. It would also be beneficial
to find a reliable way of removing systematics from the data, to allow intrinsic variability
to dominate the figures.

Another possible continuation of the project would be to focus more on the interpreta-
tion of specific targets. Performing Lightcurve Inversion (e.g. citetharmon2000) on Kepler
lightcurves would allow surface maps of the star to be generated to test the possible inter-
pretations suggested here. Lightcurve Inversion does not produce unique results, so they
must be biased towards more physically likely ones. An ambitious extension would be to
try and design this bias to be target specific, based on the knowlege we have about the
properties of the star.
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